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Abstract. The structure of the 90◦ domain wall separating the inner core and the outer shell
of Co-rich amorphous wire is studied theoretically on the basis of a model distribution of
the residual quenching stresses throughout the wire volume. For a long wire, both axial and
circumferential hysteresis loops are obtained at different values of the applied stress. The applied
tensile stress is shown to reduce the remanent wire magnetization, but has only little effect on
the wire coercivity. On the other hand, the applied torsional stress leads to an increase of the
wire coercivity. The results obtained are in qualitative agreement with recent experiments.

1. Introduction

The properties of soft ferromagnetic wires produced by the ‘in-rotating-water’ quenching
technique attract considerable research interest due to some unique characteristics, such
as magnetic bistability, mainly observed in Fe-rich materials, and the Matteuci effect (see
reviews [1–3] and references therein). More recently [4–5], the giant magneto-impedance
(GMI) effect has been reported for Co-rich amorphous wires and ribbons with very small
magnetostriction constants. The great sensitivity of the effect to the external magnetic field
makes it very promising for applications in new magnetic sensors and magnetic recording
heads.

To understand the origin of the GMI effect it seems important to study the influence of
external magnetic field on a very sensitive magnetization distribution in Co-rich amorphous
wire with nearly zero magnetostriction. The magnetic properties of amorphous wires
are usually explained in terms of the so-called core–shell domain structure [1–3, 6]. In
the case of Co-rich amorphous wire with negative magnetostriction, the model consists
of the inner core uniformly magnetized along the wire axis and the outer shell with
circumferential magnetization. It is supposed that the distribution of the residual quenching
stresses throughout the wire volume plays a decisive role in determining its magnetization
configuration. In this paper we study theoretically what kind of residual stress distribution
results in the core–shell domain structure in Co-rich amorphous wire. We analysed also
the effect of the external magnetic field as well as the influence of applied stresses on the
magnetization distribution in Co-rich amorphous wire. The results obtained are compared
with the relevant experimental data.
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2. The structure of the 90◦ domain wall

It is generally accepted [1–3] that owing to the lack of magnetocrystalline anisotropy
the magnetic anisotropy of amorphous wires is mainly determined by magnetoelastic
interactions. The latter originate in amorphous wires due to residual quenching stresses.
In accordance with this idea, here we postulate that the magnetoelastic energy density of an
amorphous wire is given by [7]
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whereλs is the saturation magnetostriction constant,σ
(q)

ii are the diagonal components of
the residual stress tensor in cylindrical coordinates(ρ, ϕ, z) andαi are the components of
the unit magnetization vector. The nondiagonal components of the stress tensor are assumed
to vanish due to the symmetry of the in-rotating-water quenching procedure. For the same
reason the valuesσ (q)ii are assumed to be functions of the reduced variablex = ρ/R only,
R being the wire radius.

Let us prove that equation (1) determines the easy-axis distribution throughout the
wire volume. In fact, it is a quadratic form with respect to the components of the unit
magnetization vector. It is easy to see that in the case of Co-rich amorphous wire with
λs < 0, the quadratic form (1) has a minimum when the unit magnetization vector points
along the direction corresponding to the smallest of the componentsσ

(q)

ii . Therefore, the
direction of the easy axis in the amorphous wire with the magnetoelastic energy density
given by equation (1) is determined by the relative values of the functionsσ

(q)

ii (x) with
respect to each other.

Though some attempts have been made [8, 9] to calculate the residual stress tensor
components in an amorphous wire, these calculations seem to be oversimplified, as is
discussed in section 4. Furthermore, they lead to the conclusion [3] that theσ

(q)
ρρ -comp-

onent is the smallest component near the centre of an amorphous wire. Thus, in accordance
with these calculations, the easy anisotropy axis must be directed radially in the inner
core region of the amorphous wire. This result seems incompatible with the conventional
core–shell domain structure of Co-rich amorphous wire [1–3, 6].

In order to investigate qualitatively the role of the residual quenching stresses and to
describe the experimental data properly, in this paper we use the assumption [10] that the
behaviour of the diagonal components of the residual stress tensor in the amorphous wire
is similar to that for the quenched materials in the form of a large rod. As the experiment
[11] shows, in an iron rod the valuesσ (q)ii are decreasing functions ofx, theσ (q)ρρ -component
being positive. Also, theσ (q)ϕϕ - andσ (q)zz -components are positive near the centre of the wire
but change sign somewhere in the rod interior and become negative near the rod surface.
We assume a similar dependence for theσ (q)ii -values for the amorphous wire, as shown
schematically in the figure 1. Additionally, we try to find the simplest possible scenario
leading to the core–shell magnetization distribution in the amorphous wire with negative
magnetostriction.

First, consider the case shown in figure 1(a), where the inequalityσ
(q)
ϕϕ < σ

(q)
ρρ , σ

(q)
zz

holds over the whole range of radii, 0< ρ < R, and hence the easy anisotropy axis points
in the azimuthal direction everywhere. It can be shown that in this case the lowest-energy
state of the wire is the magnetization curling withαϕ = +1 or αϕ = −1 throughout
the wire volume, the uniformly magnetized core being absent. More strictly, theαz-
component remains nonzero only in the very small regionρ < δ near the wire centre, where
δ = √C/Ke is a length of the order of the domain wall width,C is the exchange constant
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Figure 1. The assumed radial dependence of the residual stress tensor components in Co-based
wire: (a) the uniformly magnetized inner core is absent; (b) the reduced inner-core radius is
given byx1 = R1/R.

andKe is the effective anisotropy constant. This excludes the magnetization singularity
at ρ = 0 (see also [12]), but makes a very small contribution to the longitudinal wire
magnetization. Thus, the situation shown in figure 1(a) is unexpected for the Co-rich
Unitika wires, for which the hysteresis loop measurements show an appreciable remanent
magnetization directed along the wire axis [6, 10, 13]. One can explain this fact [6] assuming
that near the centre of the wire the easy anisotropy axis points in thez-direction. From
equation (1) this implies that near the centre of the wire the inequalityσ

(q)
zz < σ

(q)
ρρ , σ

(q)
ϕϕ

must hold, whereas the previous one holds near the wire surface (see figure 1(b)). In such
a case the functionσ (q)zz (x) intersectsσ (q)ϕϕ (x) at a certain pointx1 = R1/R < 1. It can be
shown [14] thatR1 is the radius of an inner core region uniformly magnetized along the
wire axis; forρ > R1 the magnetization is directed circumferentially. Of course, the wire
magnetization does not change abruptly in the wire volume. Therefore, the 90◦ domain wall
separating the core and the outer shell of the amorphous wire originates nearρ = R1.

Recently, the influence of various kinds of applied stress on the magnetization
distribution in an amorphous wire has been studied experimentally [13, 15, 16]. It can
be theoretically described by adding some terms to the magnetoelastic energy of the wire.
For example, due to the application of a uniform tensile stress to the ends of the amorphous
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wire, a magnetoelastic energy density appears [7]:

w
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where the only nonvanishing stress tensor component is given byσ (a)zz = constant [17]. On
the other hand, the influence of the applied torsional stress on the wire magnetization can
be described by means of the equation

w
(3)
m−el = −3λsσ

(a)
ϕz αϕαz σ (a)ϕz =

Eε

2(1+ ν)ρ (3)

since in this case only the componentσ (a)ϕz is nonzero [17]. HereE is Young’s modulus,ν
is Poisson’s modulus andε is the torsional angle per unit wire length.

In this paper we confine ourselves to the case in which the magnetic anisotropy of
the amorphous wire can be described by means of equations (1)–(3). We assume that
the eigenstresses produced by the magnetostrictive strains of the domain walls are small
in comparison with the quenching stresses due to the very low value of the saturation
magnetostriction constant of Co-rich wire. One may assume that the various types of heat
treatment [18] modify the as-cast stress distribution in Co-rich wire considerably. The effect
of the heat treatment as well as that of the induced anisotropy can probably be taken into
account qualitatively by means of the corresponding change of the stress tensor components
in equation (1).

To obtain the total free energy of the amorphous wire it is necessary to take into account
in addition to (1)–(3) the exchange and the Zeeman energies. We assume that the exchange
energy density in amorphous wire is given by a simple equation [7]:

wexc = C

2
(∇α)2. (4)

It should be noted that previous work on the magnetization structure of amorphous wires [6,
9, 10] has neglected the exchange energy term, taking into consideration just the distribution
of the easy anisotropy energies throughout the wire cross-section. Nevertheless, it seems of
interest to study the structure of a 90◦ domain wall separating the core and shell regions of
a Co-rich wire. As we shall see below, it has a rather large width and its structure depends
substantially on the values of the applied stresses.

As for the Zeeman energy, we consider two different cases. When an external magnetic
field with an amplitudeH0 is applied along the wire axis, the Zeeman energy density is
given by

w
(1)
Z = −MsH0αz. (5a)

On the other hand, the energy density related to a currentI flowing through the wire can
be evaluated as

w
(2)
Z = −MsHϕαϕ Hϕ = 2I

cR2
ρ. (5b)

In this paper we do not take end effects into consideration [19], assuming the wire to
be sufficiently long for this to be appropriate. Then, bearing in mind the axial symmetry
of the wire and the residual and applied stresses, one can suppose that the magnetization
distribution in the wire may be expressed as

αρ = 0 αϕ = sinθ(ρ) αz = cosθ(ρ) (6)

whereθ(ρ) is a function to be determined. Note that for the magnetization distribution (6)
the densities of the volume and surface magnetic charges vanish simultaneously. Thus, the
magnetostatic wire energy is zero.
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First, let us consider the case in which the uniform external magnetic field is applied
along the wire axis. Then, the total energy of the wire with applied stresses can be obtained
by means of the integration of the sum of equations (1)–(4) and(5a) throughout the wire
volume. Taking into account (6), one can obtain

W = Wexc +Wm−el +W(1)
Z

Wexc = 2πLz

∫ R

0
ρ dρ

C

2

[(
dθ

dρ

)2

+ sin2 θ

ρ2

]
(7a)

Wm−el = πLzKe
σ0

∫ R

0
ρ dρ

[
σ (q)ϕϕ sin2 θ + (σ (q)zz + σ (a)zz ) cos2 θ + 2σ (a)ϕz sinθ cosθ

]
(7b)

W
(1)
Z = −2πLzMsH0

∫ R

0
ρ dρ cosθ(ρ) (7c)

whereKe = 3|λs |σ0 is the effective anisotropy constant,σ0 is the amplitude of the residual
stress andLz is the length of the wire.

Minimizing the total wire energy (7) with respect to the functionθ(ρ) one arrives at
the equation
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with the boundary condition dθ/dx = 0 at x = 1. Here we introduce the dimensionless
parameters

p = KeR
2

C
h0 = H0MsR

2

C
. (8b)

The solution for (8) must remain finite atx = 0. It describes the structure of the 90◦ domain
wall separating the inner core and the outer shell of the Co-rich wire. Simple estimations
for a position and a width of the wall in the absence of applied stress were given recently
[14]. Here we study the influence of the applied stresses on the wall structure.

The calculations for the case (5b), in which the wire magnetization is affected by the
direct currentI flowing through the wire, lead to the same equation (8), with the difference
that the last term in this equation is replaced by the term

−hϕx cosθ

where

hϕ = HϕMsR
2

C
.

Using in (8b) the valuesKe = (2–4) × 102 erg cm−3, R = 6 × 10−3 cm and
C = 10−6 erg cm−1 [6], one can see that the parameterp ≈ 103 is very large for a
typical Co-rich wire. For this reason, the Runge–Kutta method usually used for numerical
integration of ordinary differential equations turns out to be unsuccessful in our case. To
solve this problem we use here a numerical procedure which is analogous to a direct
numerical integration of the Landau–Lifshitz–Gilbert (LLG) equation [20]. The details of
the calculations are given in the appendix.

The results of the calculations are shown in figures 2–4. For definiteness, we assume in
these calculations that for as-cast wire the residual stress tensor components are described
by means of the simple model expressions

σ (q)ρρ = σ0(1− x2) σ (q)ϕϕ = σ0(1− 2x2) σ (q)zz = σ0(0.5− x2). (9)
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Figure 2. The structure of the 90◦ domain wall in amorphous Co-based wire with the radius
R = 6 × 10−3 cm and effective anisotropy constantKe = 250 erg cm−3 at various values
of applied stress. (a) Tensile stress: (1)σ (a)zz /σ0 = 0; (2) σ (a)zz /σ0 = 0.1; (3) σ (a)zz /σ0 = 0.2.
(b) Torsional stress: (1)σmax

ϕz /σ0 = 0; (2) σmax
ϕz /σ0 = 0.1; (3) σmax

ϕz /σ0 = −0.1. σ (a)zz /σ0 = 0.2
is the amplitude of the residual quenching stress;σmax

ϕz is the maximal value of the torsional
stress at the wire surface.

Also, the effective anisotropy constant and the saturation magnetization of amorphous Co-
rich wire are assumed to beKe = 250 erg cm−3 andMs = 500 G, respectively. Choosing
the model expressions (9), one must take into account the condition〈σzz〉 = 0. In fact, one
can assume that a sufficiently long piece of an amorphous wire is uniform along its length.
In such a case, the above condition is a consequence of the mechanical equilibrium equation
for the amorphous wire [17].

Qualitatively, the radial dependencies of the values (9) correspond to the case shown
in figure 1(b). The reduced inner-core radius is the important parameter, which can be
estimated for a given wire from the experiment. It is approximately determined by the
relation σ (q)ϕϕ (x1) = σ

(q)
zz (x1) [14]. Thus, for the model (9) we havex1 = 1/

√
2, while

the reduced remanent magnetization isMr/Ms ≈ x2
1 = 1/2. We choose this value as an

average one, bearing in mind that for different Co-rich wires the experimental data for the
remanent ratio are scattered in the range fromMr/Ms = 0.25 [10] toMr/Ms = 0.65 [6].

Figure 2(a) shows the influence of the applied tensile stress on the structure of the 90◦

domain wall in the absence of the external magnetic field. It can be seen that due to a small
value of the effective anisotropy constant the width of the wall is rather large (of the order
of several micrometres). Also, as a result of the tensile stress the inner-core radius of the
wire reduces. In our model this can be explained as follows. From equation (8) one can see
that the application of the tensile stress leads to an increase of the total longitudinal stress
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(a)

(b)

Figure 3. (a) Axial hysteresis loops of Co-rich amorphous wire at various values of applied
tensile stress: (1)σ (a)zz /σ0 = 0; (2) σ (a)zz /σ0 = 0.1; (3) σ (a)zz /σ0 = 0.2. (b) Axial hysteresis loops
of Co-rich amorphous wire at various values of applied torsional stress: (1)σmax

ϕz /σ0 = 0;
(2) σmax

ϕz /σ0 = 0.1.

tensor component. Thus, the curve corresponding to theσ
(q)
zz -component in figure 1(b) has a

parallel shift upwards with respect to the curve corresponding to theσ
(q)
ϕϕ -component. Then,

the intersection point of the curves is moved to the left and the inner-core radius reduces
since the direction of the easy anisotropy axis is determined by the relative values of the
σ
(q)
zz - andσ (q)ϕϕ -components.

Figure 2(b) shows the influence of the applied torsional stress on the wall structure.
Hereσmax

ϕz = EεR/2(1+ ν) is the maximal value of the torsional stress at the wire surface.
One can see that the magnetization distribution in the wire depends on the sign of the
torsional angleε with respect to that of theαϕ-component of the unit magnetization vector
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Figure 4. Circumferential dc hysteresis loops of Co-rich amorphous wire at various values
of applied tensile stress: (1)σ (a)zz /σ0 = 0; (2) σ (a)zz /σ0 = 0.1; (3) σ (a)zz /σ0 = 0.2. Hϕ is the
amplitude of the circular magnetic field at the wire surface.

in the outer shell of the wire. Curves 2 and 3 in figure 2(b) correspond to the positive and
the negative values of the torsional angle, respectively. Thus, as a result of the torsional
stress the magnetization distribution in the outer shell of the wire looks like a helix. The
direction of the helix depends on the sign and the value of the torsional angle per unit wire
length.

It should be noted that various radial dependencies of the stress tensor components
similar to that of equation (9) lead to close radial magnetization profiles. Thus, we
believe that the results obtained in this paper hold qualitatively for a broad enough class
of expressions (9) compatible with the conventional core–shell domain structure of Co-rich
amorphous wire.

3. Wire hysteresis loops

Calculating the different components of the wire magnetization at every given amplitude
of the external magnetic field (or current flowing through the wire), one can obtain the
various types of hysteresis loop of the amorphous Co-rich wire as shown in figures 3 and
4. Figures 3(a) and 3(b) show the axial hysteresis loops of the wire at different values of
applied tensile or torsional stresses, respectively. It can be seen that the tensile stress reduces
the remanent wire magnetization but does not have much effect on the wire coercivity. The
reduction of the remanent magnetization may be easily explained if one takes into account
that the applied tensile stress reduces the inner-core radius of the wire (see figure 2(a)). On
the other hand, the applied torsional stress of positive sign leads to an increase in the average
longitudinal wire magnetization (see curve 2 in figure 2(b)). As a result, the remanent wire
magnetization also increases. It should be mentioned that the shape of the hysteresis loop
depends on the relative signs of the tensor componentσ (a)ϕz and theαϕ-component of the
unit magnetization vector in the outer shell of the wire. Curve 2 of figure 3(b) is the limited
loop corresponding to the case in which the signs of the two components are the same.

Figure 4 shows the circumferential hysteresis loops of the Co-rich amorphous wire for
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the case in which the azimuthal magnetic field, generated by a current flowing through the
wire, is parallel to the direction of the wire magnetization in the outer shell. Since the axial
component of the remanent magnetization reduces as a function of the applied tension stress,
one should expect the remanent azimuthal magnetization to show an opposite behaviour, as
is indeed seen from figure 4.

4. Discussion and conclusions

Due to the absence of magnetocrystalline anisotropy, it is the relatively weak magnetoelastic
interactions that determine the magnetization distribution in soft amorphous ferromagnetic
wires. The distributions are related to the residual quenching stresses as well as to the
externally applied ones. To investigate the effect of the different types of stress on the
wire magnetization, here we present a simple model which allows a strict theoretical
consideration. The crucial point of the theory is the radial dependence of the diagonal
components of the residual stress tensor of the amorphous wire. In principle, this is a
problem to be solved separately. The recent attempts at calculations [8, 9] of the residual
stress tensor components seem to be oversimplified since they are based on the assumption
that the residual stresses at any given point within an amorphous wire coincide with the
internal stresses produced at the same point by the thermal gradient at the moment of
solidification. It should be stressed that this assumption is only a hypothesis which needs
to be justified. Instead of considering the thermal gradient stresses as being frozen, one
needs to study the time-dependent evolution of these stresses during the cooling process
of an amorphous wire up to room temperature. It is necessary to maintain at all times
the mechanical equilibrium between the internal core of the wire, which is still liquid,
and the outer solidified shell. Also, it is important to take into account the difference
between the specific densities of liquid and amorphous alloys. Having obtained the tensor
stress components of the amorphous wire as functions of time,σii(x, t), one can derive
the residual stresses asymptotically by means of the relationσ

(q)

ii (x) ≈ σii(x, t)|t→∞. The
present authors intend to carry out these calculations in a separate paper. Nevertheless, it
is interesting to ascertain what kinds of the dependenciesσ

(q)

ii (x) are able to describe the
experimental behaviour of the amorphous wires with negative magnetostriction properly.
Note that we cannot use the results of calculations [9, 3] since they predict that theσ

(q)
ρρ -

component is the smallest component near the centre of an amorphous wire. Thus, in
accordance with equation (1), the easy anisotropy axis must be radially directed in the inner
core region of the amorphous wire. This result seems to exclude the possibility of the
existence of a uniformly magnetized core near the centre of Co-rich amorphous wire. In
this paper we point out that the situation shown in figure 1(b) is the simplest possible one
which leads to the conventional core–shell structure of Co-rich amorphous wire. Of course,
some uncertainty in choosing of the radial dependencies of the stress tensor components still
remains. Nevertheless, in case of wire with negative magnetostriction, equation (8) is valid
for any of the functionsσ (q)ii (x) until the situation becomes like that shown in figure 1(a)
or figure 1(b). Thus, the possibility exists of fitting the experimental data for the different
wires correctly.

In general, the predictions of the model considered here are in agreement with the basic
magnetic properties of the Co-rich amorphous wire. For example, the experiments described
in [13, 16] show that the remanent wire magnetization is a decreasing function of the applied
tensile stress. Also, the application of the tensile stress has only little effect on the wire
coercive field [16]. The same behaviour can be seen in figure 3(a). Next, the increase of
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the remanent magnetization due to the application of the torsional stress (see figure 3(b)) is
in agreement with the experiment described in [15]. The important parameter of the theory
is the amplitude of the residual quenching stress. This value for the Co-rich amorphous
wire is assumed to be of the order ofσ0 ≈ 330 MPa [6]. Then, the absolute values of
the applied tensile stresses corresponding to the curves 2 and 3 in figure 3(a) are 33 MPa
and 66 MPa, respectively. These are rather low values as compared with the typical value
100–200 MPa of the applied tensile stress used in the experiments described in [13, 16].
This can probably be explained by assuming that the amplitude of the residual quenching
stress in Co-rich wire is somewhat larger than that given in [6]. Another possibility is that
the saturation magnetostriction constant is a decreasing function of the stress amplitude [22].

In conclusion, a simple theoretical model which takes into account the distribution of the
residual quenching stresses throughout the wire volume is shown to describe qualitatively
the basic magnetic properties of Co-rich amorphous wire with negative magnetostriction.
Nevertheless, more detailed comparison with the experimental data is needed to refine
the model and to achieve a deeper understanding of the magnetization processes in the
amorphous wires.

Appendix

Here we describe briefly the numerical procedure used in this paper to obtain the radial
profile of the magnetization in an amorphous wire at different values of the applied stress.
Taking the variational derivatives of the total free energy (7) with respect to the components
of the unit magnetization vector one can obtain the reduced components of the effective
magnetic field as

hϕ = 1

x

d

dx

(
x

dαϕ
dx

)
− αϕ
x2
+ p

[
σ
(q)
ϕϕ

σ0
αϕ +

σ (a)ϕz

σ0
αz

]
(A1)

hz = 1

x

d

dx

(
x

dαϕ
dx

)
− p

[
σ
(q)
zz + σ (a)zz

σ0
αz +

σ (a)ϕz

σ0
αϕ

]
+ h0. (A2)

Then it is easy to see that the stationary LLG equation which is equivalent to the ordinary
differential equation (8) may be written as

A(x) = αz(x)hϕ(x)− αϕ(x)hz(x) ≡ 0. (A3)

To integrate (A3) numerically for certain given parametersp and h0 we carry out a
numerical procedure which imitates the evolution of some initial magnetization distribution
in accordance with the LLG-type equation. We subdivide the cylindrical wire into a great
number(N ≈ 102) of thin hollow cylinders with the same axis, supposing that in the range
of the ith cylinder,(i − 1)/N 6 x 6 i/N , the unit magnetization vector remains constant,
αi = (0, αϕ,i , αz,i). Suppose that at thesth step of the iteration procedure the magnetization
distribution has been obtained for all cylindrical layers,i = 1, 2, . . . , N . Then, at the
(s + 1)th step of this procedure the magnetization distribution in theith cylindrical layer
can be calculated by means of the relations

α
(s+1)
ϕ,i = α(s)ϕ,i + τA(s)i

κα
(s)
z,i + τh(s)z,i

1+ τ 2[(h(s)ϕ,i)
2+ (h(s)z,i )2]

α
(s+1)
z,i = α(s)z,i − τA(s)i

κα
(s)
ϕ,i + τh(s)ϕ,i

1+ τ 2[(h(s)ϕ,i)
2+ (h(s)z,i )2]

(A4)
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where

A
(s)
i = α(s)z,i h(s)ϕ,i − α(s)ϕ,ih(s)z,i . (A5)

Here τ is the step of the effective ‘time’ andκ is the damping parameter of the iteration
process. Additionally, after every step of the iteration procedure the unit magnetization
vector is normalized as[

α
(s)
ϕ,i

]2
+
[
α
(s)
z,i

]2
= 1 i = 1, 2, . . . , N. (A6)

Suppose that the iteration process converges for some appropriately chosen parametersτ

andκ. Then, in the limits →∞ for any cylindrical layer we have the relations∣∣∣α(s+1)
ϕ,i − α(s)ϕ,i

∣∣∣→ 0
∣∣∣α(s+1)
z,i − α(s)z,i

∣∣∣→ 0.

Thus, in the limits → ∞ in accordance with equations (A4) the valuesA(s)i uniformly
converge to zero for all layersi = 1, 2, . . . , N . From equation (A5) this implies that the
discrete analogue of equation (A3) is obeyed for the magnetization distribution obtained
as a result of the iteration procedure. Note that for the convergence of the iteration
process a smooth enough initial magnetization distribution must be chosen on the basis
of physical considerations. For example, calculating the magnetization distribution in the
wire for various values of external magnetic field one may choose a stable magnetization
configuration, obtained previously for some value ofh0, as the initial one in order to
calculate the corresponding magnetization configuration for a slightly larger or smaller value
of h0. As the criterion for the termination of the iteration process, we use the condition
1ψmax 6 10−4 [12, 21], where1ψmax is the maximal angle of the unit magnetization
vector with the normalized effective field vector in the same numerical cell. Typical values
of iteration parameters wereτ = 10−5 andκ = 0.2.
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